(1)

Total pages-02

07/PG/IVS/MTM/404/20

M.Sc 4th Semester Examination, 2020

Applied Mathematics with Oceanology and Computer Programming

Paper: MTM - 404

(Non-linear Optimization) Full Marks: 50 Time: 2 hours The figures in the right hand margin indicate marks Answer **Q. No. 1** and any **three** questions from the rest

1. Answer any five questions

 $2 \times 5 = 10$

6 + 4

- (a) What is stochastic programming? Write two important methods for solving Stochastic programming problem.
- (b) How is the degree of difficulty defined for a geometric programming problem? Give an example of a geometric programming problem which has negative degree of difficulty.
- (c) Define Nash equilibrium solution and Nash equilibrium outcome in pure strategy for bimatrix game.
- (d) Define Pareto optimal solution in a multi-objective nonlinear programming problem.
- (e) State Kuhn-Tucker stationary point necessary optimality theorem.
- (f) What do you mean by complementary slackness conditions concerning on Wolfe's method?
- (g) Why is the prisoner's dilemma important?
- 2. (a) Solve the following quadratic problem by Beal's method:

Minimize $f(x) = 2x_1 + 3x_2 - 2x_1^2$

Subject to the constraint

$$x_1 + 4x_2 \le 4$$
$$x_1 + x_2 \le 2$$
$$x_1, x_2 \ge 0$$

(b) Write the dual of the nonlinear programming problem

Minimize $f(x) = -4x_1 - 2x_2 + x_1^2 + x_2^2$ Subject to the constraint $2x_1 - x_2 \le 7$ $-x_1 + x_2 \le -2$

 $x_1, x_2 \ge 0$

(Turn Over)

3. (a) Using Geometric Programming Technique, Minimize $f(x) = x_1^2 + x_2^2$

Subject to the constraint $x_1x_2 > 1 x_1, x_2 \ge 0$

- (b) State and prove Slater's theorem of alternative.
- 4. Solve the following nonlinear programming problem using separable programming algorithm 10 Minimize $f(x) = 3x_1 + 2x_2$ Subject to the constraint $4x_1^2 + x_2^2 \le 16$ $x_1, x_2 \ge 0$
- 5. (a) Use chance constrained programming technique to find an equivalent deterministic LPP to the following stochastic programming problem:
 5 + 5

Minimize
$$f(x) = \sum_{j=1}^{n} c_j x_j$$

Subject to the constraints $p\left[\sum_{j=1}^{n} a_{ij} x_j \le b_i\right] \ge p_i, x_j \ge 0, j = 1, 2, ... n.$

Where a_{ij}'s are random variables and P_i's are Specified probabilities.

(b) Let θ be a numerical differentiable function on an open convex set $\Gamma C R^n$. θ is concave if and only if $\theta(x^2) - \theta(x^1) \le \nabla \theta(x^1)(x^2 - x^1)$ for each x^1 , $x^2 \in \Gamma$.

6. Find the mixed Nash equilibrium points of the game

(3, 2)	(2, 1)
(0, 3)	(4, 4)

[Internal Assessment: 10 Marks]

10

6 + 4