Total pages- 02

Full Marks:20

M.Sc 2ndSemester Examination, 2021

Applied Mathematics with Oceanology and Computer Programming

(General Topology)

Paper: MTM - 206

Time: 2 hours

07/PG/IIS/MTM/206/21

The figures in the right-hand margin indicate marks

- 1. Answer any two questions
 - (a) Show that the order topology on a nonempty set is a Hausdorff space.
 - (b) Show that subspace of a Hausdorff space is Hausdorff.
 - (c) In the finite complement topology on **R**, to what point/points does the sequence (x_n) , where $x_n=n^2$ converge?
 - (d) Determine closure of the interval A= (-2, $\sqrt{2}$) in the K-topology on **R**

2. Answer any **two** questions

(a) Define homeomorphism. Show that the subspace (0, 1) of **R** is not homeomorphic with unit disk in the plane.

(b) Consider the product and box topology on \square^N . Under what topology the function $f: \mathbb{R} \to \mathbb{R}^N$

defined by $f(t) = (t, \frac{t}{2}, \frac{t}{3}, \dots)$ is continuous?

- (c) Consider $f: X \to Y$ be a bijective continuous function. Show that if X is compact and Y is Hausdorff then f is a homeomorphism.
- (d) Define path connected space. Verify whether image of a path connected space under a continuous map is path connected.

07/PG/IIS/MTM/206/21

 $2 \times 2 = 4$

 $2 \times 4 = 8$

- 3. Answer **any one** question:
 - (a) (i) Show $f: X \to Y$ is an open map if and only if $f(\operatorname{int} A) \subseteq \operatorname{int}(f(A))$ for each $A \subset X$, X and Y are topological spaces.
 - (ii) Show that the countable collection $B = \{[a,b): a < b, a, b \in \Box \}$ is a basis that generates a topology different from the lower limit topology on \Box .
 - (b) (i) Show that image of a compact space under a continuous map is compact.
 - (ii) Show that in the finite complement topology on \Box , every subspace of **R** is compact.

07/PG/IIS/MTM/205/20

 $1 \times 8 = 8$