

VIDYASAGAR UNIVERSITY

B.Sc. General Examination 2021

(CBCS)

4th Semester

MATHEMATICS

PAPER—SEC2T

Full Marks : 40

Time : 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

SEC2T : GRAPH THEORY

Answer any two questions.

 2×15

- (a) Show that sum of degree of vertices of a graph is equal to twice the number of edges. Hence show that number of odd degree vertices of a graph must be even.
 - (b) Show that a non-null graph is bipartite if and only if it does not contain any cycle of odd degree.

- (c) Let G be a graph. Eigen values of G are the eigenvalues of the adjacency matrix A_G . Also, let $V(G) = \{v_1, v_2, \dots, v_n\}$, $A_G = (a_{ij})_{m \times n}$ and $\Delta(G) = \max \{ \deg (v) / v \in V(G) \}$. Then show that if λ be an eigenvalue of A_G , $|\lambda| \leq (G)$. 5+5+5
- **2.** (a) Define circuit of a graph. Prove that a circuit free graph with n vertices and (n-1) edges is a tree.
 - (b) Prove that $K_{3,3}$ and K_5 are not planer.
 - (c) Show that a simple graph with *n* vertices and *m* components can have at most $\frac{1}{2}(n-m)(n-m+1)$ edges. 5+5+5
- **3.** (a) Show that any connected graph with *n* vertices *e* edges and *f* faces satisfy the equation (n e + f) = 2.
 - (b) Show that a graph with 2n vertices, if the degree of each vertex at least n then show that the graph is connected.
 - (c) Let G be a graph with 30 vertices such that for any two vertices u and v of G and $deg(u) + deg(v) \ge 29$. Prove that G is connected. 5+5+5
- **4.** (a) Let G be a connected graph with number of edges 11. Find the maximum possible vertices of G.

Above figure shows the distance among the cities. Find the shortest distance from the vertex A to the vertex B, using Dijkstra's algorithm.

- Prove that if the degree of each vertex of a graph is of even then the graph has an Euler circuit.
 10
- **6.** Define Hamiltonian circuit and give an example of graph which is Hamiltonian but not Eulerian. Define diameter, eccentricity and radius of a graph. Show that radius of tree T is equal to [diam(T)/2]. 10

SEC2T : INTEGRAL CALCULUS

Answer any *two* questions. 2×15

1. (a) Evaluate the following integrals :

(i)
$$\int \frac{x^2}{x^4 + x^2 - 2} dx$$

C/21/BSC/4th Sem/MTMG-SEC2T

(ii)
$$\int \frac{dx}{\left(4-3x^2\right)\sqrt{3+4x^2}}$$

π

(b) If
$$I_n = \int_{0}^{\frac{\pi}{4}} \tan^n x dx$$
, $(n \in \mathbb{Z}^+, n > 1)$, show that $I_{n+1} - I_{n-1} = \frac{1}{n}$. Hence evaluate

Ners

2. (a) Show that
$$\int_{0}^{1} \frac{\log(1+x)}{1+x^2} dx = \frac{\pi}{8} \log \log 2$$

(b) If
$$f(x) = f(a+b-x)$$
, then show that $\int_{a}^{b} xf(x)dx = \frac{a+b}{2}\int_{a}^{b} f(x)dx$.

- (c) Find the area bounded by the parabolas $x^2 = 4y$ and $y^2 = 4x$. 5+5+5
- **3.** (a) Find the total length of the astroid : $x^{(2/3)} + y^{(2/3)} = a^{(2/3)}$.
 - (b) Find the volume of the solid generated by revolving the cardioide $r = a (1 \cos \theta)$ about the initial line.
 - (c) Show that the surface area of the solid generated by revolving the cycloid

$$x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$$
 about the line $y = 0$ is $\frac{64}{3}\pi a^2$.
5+5+5

C/21/BSC/4th Sem/MTMG-SEC2T

4. (a) Evaluate
$$\iint \frac{\sqrt{a^2b^2 - b^2x^2 - a^2y^2}}{\sqrt{a^2b^2 + b^2x^2 + a^2y^2}} dx dy$$
, over the positive quadrant of the

ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

(b) Find the Volume of an ellipsoid of revolution about major axis. 8+7

5. (a) Evaluate :
$$\int \frac{dx}{(5+4\cos x)^2}$$
.

- (b) Show that $\iint e^{\frac{y-x}{y+x}} dx dy$ taken over the triangle with vertices at (0,0),
- (0,1) and (1,0) is $\frac{1}{4}(e-e^{-1})$. 5+5 **6.** (a) Obtain a reduction formula for $\int_{0}^{1} x^{m} (1-x)^{n} dx, (m, n \in \mathbb{Z}^{+})$. Hence deduce its value.
 - (b) Show that the length of the arc of the parabola $\frac{l}{r} = 1 + \cos \cos \theta$ cut off its latus rectum is $l\{\sqrt{2} + \log(1 + \sqrt{2})\}$. 5 + 5

C/21/BSC/4th Sem/MTMG-SEC2T

SEC2T : MATHEMATICAL FINANCE

	Answer any <i>two</i> questions.	2×15
1.	(a) Discuss briefly the concept of "Time Value of Money".	
	(b) Distinguish between NPV and IRR.	7+8
2.	(a) Define floating-rate bonds.	
	(b) State the process of calculating expected return of a portfoli	.o. 5+10
3.	Discuss briefly the theorems on bond pricing.	15
4.	Define short selling. State the procedure of short selling.	15
	Answer any one question.	1×10
5.	Discuss the procedure of calculating simple interest and cor interest.	npound

- **6.** Write short notes on : 5+5
 - (a) Asset Return.
 - (b) Inflation.

6