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Abstract: Internet of Things (IoT) has become the key component of designing smart systems. 

In conventional IoT systems, the use of remote cloud servers for data storage and processing 

increases the service latency. As a solution, this paper focuses on the use of edge computing 

in IoT. The edge computing-based IoT architecture is illustrated in this paper. The edge 

device is used for pre-processing the collected sensor data. The pre-processed data is sent to 

the cloud for further analysis and storage. For data analysis, we use logistic regression in 

this paper. The simulation results present that the edge computing-based IoT system reduces 

the latency by approximately 55% than the cloud-only IoT system. As a case study, we have 

considered crop productivity prediction based on the soil, weather, and crop related dataset. 

The experimental results demonstrate that the logistic regression achieves the average 

accuracy of approximately 90%. Using edge computing, the response time is also reduced by 

approximately 67% than the cloud-only IoT system.  

Keywords: Edge computing, low latency, logistic regression, data analysis, Internet of 

Things. 

 

1. Introduction: 

In the world of contemporary wireless telecommunications, Internet of Things (IoT) is 

gaining ground quickly. IoT combines a number of technologies, including embedded 

systems, pervasive computing, actuators, ambient intelligence, sensors, communication 

technologies, etc. [1, 2]. It is an integration of various devices which communicate, sense, 

and interact with their internal and external states via the embedded system. It has emerged as 

a trend for next-generation technologies and the entire business spectrum with extended 

benefits such as increased connection of end devices, systems, and services. IoT provides 

appropriate solutions for a wide range of real-time applications, including smart health care, 

smart cities, smart retail, smart transport, and smart agriculture [3]. Along with the facilities 

of IoT, cloud computing is introduced in the field of modern research. In cloud computing, 

dynamically scalable and frequently virtualized resources are supplied through the Internet as 

a service. The enormous storage, processing, and service capabilities of cloud computing, 

combined with the information collection capability in IoT, create a network between people 
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and objects, and the objects themselves. Edge computing is another developing field in which 

data processing occurs close to the end nodes. Edge computing makes it possible for 

computation to be done at the edge of the network, on downstream data on behalf of cloud 

services and on upstream data on behalf of IoT services [4, 5]. Cloud, Edge, and IoT plays a 

vital role to develop smart system in everyday life. In conventional IoT system, the response 

time is higher as the use of long distant cloud servers increases the propagation and 

communication latencies [6]. Edge computing has brought the resources at the network edge 

and reduces the latency [7]  

IoT has emerged as a crucial element of smart applications. IoT is a principal component of 

smart agriculture [8]. IoT in agriculture is referred as the Internet of Agricultural Things 

(IoAT). The majority of the land on Earth is utilised for agriculture, which accounts for 

around one third of all land use. The rising global population is driving up demand for 

agricultural products. The seasonal cycles of crop phenology and dependence of crop 

production on weather, climate, and soil parameters are only a few of the specific challenges, 

which need to overcome in order to govern agricultural activities. Farmers and agriculture are 

harmed nationwide because they are unable to produce adequate crops as a result of abrupt 

changes in the weather. Therefore, weather forecasting largely impacts on the crop 

productivity. Moreover, soil data also largely effect on the crop production. The manual 

analysis, however, does not take into account the dynamic behaviour of the attributes, such as 

the soil parameters or the ambient parameters, etc. The crop productivity highly depends on 

several soil and weather parameters. In order to increase prediction accuracy and address 

issues with manual analysis, artificial intelligence needs to be used in crop yield prediction. 

In our present work, we have used a well-known machine learning algorithm, logistic 

regression [9] for data analysis.  

1.1. Motivations and Contribution: 

In cloud-only IoT system, the entire sensor data is sent, stored, and analysed inside the cloud. 

When a user generates a query, the cloud server after analysing the respective data, responds 

to the user. The use of remote cloud for entire data storage, analysis, and access, results in 

increase in response time, huge overhead on cloud servers, and concerns in data privacy. The 

motivation of this work is to provide a solution towards these problems. The contributions of 

this paper are: 
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 The architecture of an edge computing-based IoT system (EC-IoT) is presented and 

the working model is discussed. The sensors after collecting the data send to the edge 

device that pre-processes the data, and then forwards to the cloud. The cloud performs 

further analysis on the data and stores the data. A case study on crop productivity 

prediction using the edge-based IoT system is performed.  

 Logistic regression is used for data analysis. We take several crop classes in the input 

dataset and consider soil characteristics, climate, and weather parameters 

(temperature, humidity, pH, rainfall, nitrogen (N), potassium (K), and phosphorus (P) 

levels of soil) as the input features. Logistic regression is used for classifying the 

input dataset, and finally achieved high level recognition accuracy.  

The rest of the paper is organized as: Section 2 presents the existing literatures on IoT and 

data analytics. Section 3 presents the edge computing-based IoT architecture. Section 4 

presents the logistic regression-based data analysis. Section 5 presents the simulation and 

experimental results. Finally, we conclude in Section 6. 

2. Related Work: 

The IoT has a lot of possibilities leading to a huge number of applications. After a thorough 

study, it is noted that the wings of IoT has already spread in various areas like home, office, 

transport, agriculture, medical science, etc. In order to address the fundamental concerns and 

requirements of the IoT, the authors in [10] provided a concise description of its defining 

characteristics, focusing on data collection and data fusion. IoT was applied with cloud to 

develop a smart healthcare system in [11] to monitor patients' health data gathered from a 

wide range of wireless sensory healthcare devices. By utilizing Raspberry Pi and Docker 

containers, the suggested architecture was reasonably priced, scalable, interoperable, and 

provided lightweight access. In [12], a smart rehabilitation system was developed to represent 

the automating design methodology based on ontology. This study established the 

groundwork for disease detection and resource allocation by creating a rehabilitation system 

based on IoT technologies, Service Oriented Architecture (SOA), and multidisciplinary 

optimization methods, and ontology. IoT and ontology played a pivotal part in the 

development of this system, which allowed for both rapid rehabilitation system development 

and the efficient exchange of domain-specific expertise. IoT was applied with cloud to build 

a smart ECG monitoring system in [13] for smart health care. Using a wearable monitoring 

node, ECG data were collected and wirelessly transferred to the IoT cloud. The IoT cloud 
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employed both the HTTP and MQTT protocols to provide users with visual and fast ECG 

data. In [14, 15], IoT was used in smart agriculture for fruit growth monitoring. 

For data analysis, machine learning (ML) algorithms have gained popularity. For district 

level, a crop prediction system was built in [16]. A self-created dataset was used that included 

production information from the previous 10–12 years as well as a number of soil and climate 

parameters. With the help of proximal sensing data on soil and crop parameters, four ML 

algorithms: linear regression (LR), elastic net (EN), k-nearest neighbour (k-NN), and support 

vector regression (SVR), were utilised in [17] to forecast potato (Solanum tuberosum) tuber 

yield. By analysing the soil data, ML algorithms had been employed in [18] to forecast the 

mustard crop output. KNN and Artificial Neural Network (ANN) algorithms could be used to 

forecast the yield of mustard crops. Semi parametric neural network (SNN), a parametric 

statistical model combined with deep neural network (DNN), improved the predictive 

performance, as demonstrated in [19]. When applied to agricultural yield prediction, the SNN 

outperformed all other methods by adding a neural network to a parametric model in order to 

capture dynamics, which were either not present or were partially represented in the 

parametric model. To model the effect of climate change together with the effects of varying 

soil and climate parameters on crop production projections, a multi-parametric DNN was 

used in [20]. The multi-parametric DNN outperformed the DNN statistically by drawing on 

prior information about many functional forms associated to the agricultural production field. 

However, the complexity increased and the quality of the hidden representation might be 

jeopardised due to the employment of a hierarchy of characteristics. The technique also had 

the flaw of not providing the best possible representation for medium-sized datasets. In [21] a 

crop yield recommendation system was developed by using Random Forest algorithm. 

Different weather parameters such as temperature, rainfall, were analysed. A greenhouse crop 

yield prediction system was developed in [22] by combining Temporal Convolution Network 

(TCN) and Recurrent Neural Network (RNN). The suggested method was rigorously tested 

on several datasets collected from various authentic greenhouse settings for tomato 

cultivation. In [23], a crop yield prediction system was developed by using Random Forest 

algorithm. Different parameters i.e. temperature, pH, humidity, rainfall were classified to 

provide farmers with a better understanding of the demand and cost of various crops. Farmers 

could use this information to better decide what to grow in their fields. In this paper, we 

discuss the edge-based IoT framework and its use in crop productivity prediction using 
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logistic regression. The existing works on IoT systems for different applications are 

summarized in Table 1. 

Table 1: Existing literatures on IoT systems 

Reference Contribution Application area 

Fan et al. 

(2014) [12] 

Presents an ontology-based automated design 

methodology (ADM) for smart rehabilitation 

systems. Ontology assists computers in gaining a 

deeper understanding of symptoms and medical 

resources, so facilitating the creation of a 

rehabilitation strategy and the rapid, automated 

reconfiguration of medical resources to meet 

patients' individual needs. 

Smart healthcare 

Yang et al. 

(2016) [13] 

A novel ECG monitoring methodology based on 

IoT methods is proposed. A wearable monitoring 

node collects ECG data, which is then wirelessly 

sent to the IoT cloud. In order to give consumers 

visual and timely ECG data, the IoT cloud uses both 

the HTTP and MQTT protocols. 

Smart healthcare 

Jaiswal et al. 

(2018) [11] 

Proposed an approach that uses a Raspberry Pi as 

an edge device and a Docker container to automate 

the problem of patient data collection, distribution, 

and processing. This makes it easier for the 

physician to identify and monitor medical 

problems. 

Smart healthcare 

Droesch et al. 

(2018) [19] 

Proposed a method for modelling yields that uses a 

semiparametric version of DNN. This method can 

take into account both known parametric structure 

and unobserved cross-sectional heterogeneity at the 

same time. 

Smart agriculture 

Al-Kuwari et Presented the full architecture of an IoT-based Smart home 
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al. (2018) [24] sensing and monitoring system for automated smart 

homes. The EmonCMS cloud server platform was 

utilised in the proposed architecture for data 

collection, data visualisation, and remote control of 

household appliances and devices. 

system 

Lin et al. 

(2019) [25] 

A Secure and Efficient Location-based Service 

(SELS) scheme for smart transportation was 

proposed to keep sensitive data private and offer 

analysis services to users with low computing and 

communication costs. 

Smart 

transportation 

Boukerche. et 

al. (2019) [26] 

Proposed an IoT-based system for traffic control 

and crowd management to cooperate safer, 

efficient, eco-friendly, and enjoyable transportation 

for people and goods in large urban areas. 

Smart 

transportation 

Abou-Nassar 

et al. (2020) 

[27] 

Proposed a blockchain-based system for smart cities 

to share healthcare resources. A smart contract 

would ensure the authenticity of budgets, and the 

Indirect Trust Inference System (ITIS) would 

reduce semantic gaps and improve the estimation of 

Trustworthy Factors (TF) through the network's 

nodes and edges. 

Smart healthcare 

Abbas et al. 

(2020) [17] 

Proposed a technique for proximal sensing that 

could be used to study soil and crop variables which 

affect the crop yield. Precision agriculture 

technologies could be used to their fullest extent 

when combined with new ways of processing data, 

such as ML algorithms, to get useful information to 

control crop yield. 

Smart agriculture 

Kelley et al. 

(2020) [28] 

Proposed a vehicular technology adaptation in 

accordance with the population for various cities. 

Smart 

transportation 

Guhr et al. Data security and privacy issues pertaining to Smart home 
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(2020) [29] healthcare were described for smart home users. 

The authors analysed potential psychological and 

behavioural issues with regard to the security of 

devices and data in smart homes and offered 

solutions for the issues. 

system 

 

Ferraris et al. 

(2021) [30] 

Examined the behaviour of smart home gadgets like 

the Amazon Echo and Google Home in terms of 

building trust connections, and suggested a privacy-

preserving smart home trust model to strengthen the 

relationships among all individuals involved. 

Smart home 

system 

 

 

3. Edge Computing-based Internet of Things (EC-IoT): 

In EC-IoT, sensors are attached with the objects for collecting respective data, e.g. soil 

moisture level, soil temperature level, humidity, temperature, etc., in case of soil health 

monitoring, blood pressure, body temperature, pulse rate, etc. in health monitoring, etc. The 

collected object status is sent to the connected edge device that performs data pre-processing. 

The pre-processed data is sent to the cloud servers for storage and further analysis. Figure 1 

presents the three-tier EC-IoT architecture.  

Tier 1 contains the sensors attached with the respective objects. A sensor node is represented 

as a three tuple𝑆 =< 𝑆𝑖 , 𝑂𝑖, 𝑆𝑠 >, where 𝑆𝑖 presents the ID of the sensor, 𝑂𝑖 presents the ID of 

the object with which it is attached, and 𝑆𝑠 presents the status of sensor i.e., active or idle. In 

tier 1, the sensors collect the object status and send the data to tier 2. 

Tier 2 contains the edge device. An edge device is represented as a three tuple 𝐸 =<

𝐸𝑖 , 𝐻𝑖 , 𝐸𝑠 >, where 𝐸𝑖 presents the ID of the edge device, 𝐻𝑖 presents the hardware and 

software specification of the device, and 𝐸𝑠 presents the status of device i.e., active or idle. 

The edge device receives data from the sensors present at tier 1, and then pre-processes the 

received data. After pre-processing, the edge device sends the data to tier 3. 

Tier 3 contains the cloud servers. A cloud computing instance is represented as a three tuple 

𝐶 =< 𝐶𝑖, 𝑃𝑖 >, where 𝐶𝑖 presents the cloud computing instance ID, and 𝑃𝑖 presents the set 

consists of the processing unit IDs of the required cloud servers of the instance.  The cloud 

servers store the received data and perform further analysis if required. The edge servers 
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(attached with the base stations) are connected with the cloud, and they contain the cache 

copies of the frequently accessed data inside the cloud. If a user makes a query, the respective 

edge server responds to the user. This in turn reduces the response time compared to the 

cloud-only architecture. As the entire sensor data is not analysed and stored inside the remote 

cloud servers, the overhead on the cloud is reduced and the data privacy is increased. 

 

 

Figure 1: Three-tier architecture of EC-IoT 

 

The latency in the EC-IoT architecture is given as the sum of the data collection latency (𝐿𝑐), 

data transmission latency (𝐿𝑡), and data processing latency (𝐿𝑝), as follows. 

𝐿 = 𝐿𝑐 + 𝐿𝑡 + 𝐿𝑝    (1) 

The data transmission latency from a sensor 𝑗 to the edge device is given as, 

𝐿𝑡𝑠𝑒𝑗 = (1 + 𝑓𝑠𝑒𝑗) ∙
𝐷𝑠𝑒𝑗

𝑅𝑠𝑒𝑗
   (2) 
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where 𝐷𝑠𝑒𝑗 is the amount of data transmitted, 𝑓𝑠𝑒𝑗  is the link failure rate, and 𝑅𝑠𝑒𝑗 is the data 

transmission rate from the sensor 𝑗 to the edge device. If there are 𝑛 sensors, then the latency 

in data transmission from tier 1 to tier 2 is given as,  

𝐿𝑡𝑠𝑒 = max (𝐿𝑡𝑠𝑒1, 𝐿𝑡𝑠𝑒2,…, 𝐿𝑡𝑠𝑒𝑛)  (2) 

where 𝐿𝑡𝑠𝑒𝑗  is the latency in data transmission from a sensor 𝑗 to the edge device, and 1 ≤

𝑗 ≤ 𝑛. 

The data transmission latency from tier 2 to tier 3 i.e., from the edge device to the cloud is 

given as, 

𝐿𝑡𝑒𝑐 = (1 + 𝑓𝑒𝑐) ∙
𝐷𝑒𝑐

𝑅𝑒𝑐
         (3) 

Where, 𝐷𝑒𝑐 is the amount of data transmitted, 𝑓𝑒𝑐  is the link failure rate, and 𝑅𝑒𝑐 is the data 

transmission rate from the edge device to the cloud. 

The total data transmission latency is given as the sum of the data transmission latency from 

tier 1 to tier 2 and the data transmission latency from tier 2 to tier 3, given as, 

𝐿𝑡 = 𝐿𝑡𝑠𝑒 + 𝐿𝑡𝑒𝑐    (4) 

The data processing latency of the edge device is given as, 

𝐿𝑒𝑝 =
𝐷𝑒𝑝

𝑆𝑒𝑝
     (5) 

Where, 𝑆𝑒𝑝 is the processing speed of the edge device and 𝐷𝑒𝑝 is the amount of data 

processed. 

The data processing latency of the cloud is given as, 

𝐿𝑐𝑝 =
𝐷𝑐𝑝

𝑆𝑐𝑝
     (6) 

Where,  𝑆𝑐𝑝 is the processing speed of the cloud and 𝐷𝑐𝑝 is the amount of data processed. 

The total data processing latency is given as the sum of data processing latency of the edge 

device and the data processing latency of the cloud, given as, 

𝐿𝑝 = 𝐿𝑒𝑝 + 𝐿𝑐𝑝    (7) 
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In Section 5, we compare the latency in edge-based IoT system and cloud-only IoT system. If 

the user generates a query regarding crop productivity prediction of a land, the latency in 

query generation and transmission (𝐿𝑞), latency in accessing respective data (𝐿𝑎), and latency 

in receiving the response (𝐿𝑟), are considered to calculate the response time. The response 

time is therefore determined as,  

𝑇 = 𝐿𝑞 + 𝐿𝑎 + 𝐿𝑟    (8) 

In edge-based system, the edge server responds to the user, whereas in cloud-only system the 

cloud sends the response. Hence, the total latency in the EC-IoT is lower than the cloud-only 

IoT system. In Section 5, we compare the response time in edge-based IoT system and cloud-

only IoT system. 

4. Logistic regression for data analysis in EC-IoT system: 

In this work, we use logistic regression for data analysis. Logistic Regression is a well-known 

ML algorithm that can provide probabilities and classify new data using both continuous and 

discrete datasets. The categorical dependent variable is predicted using a set of independent 

variables. Logistic regression is a way to predict the outcome of a categorical dependent 

variable. The result must be a categorical or discrete value. It can be Yes or No, 0 or 1, true or 

false, etc., but instead of giving the exact value, it gives the probabilistic values that lie 

between 0 and 1. Logistic regression can be used to classify observations based on different 

types of data, and it is easy to find out which variables work best for classification [9].  

We use the sigmoid function to map the predicted values to probabilities. The function maps 

any real value to a number between 0 and 1. In ML, the sigmoid function is used to convert 

predictions to probabilities. The hypothesis of logistic regression tends to keep the cost 

function between 0 and 1, presented as follows: 

0 ≤ ℎ𝛼(x) ≤ 1  

The equation of straight line is given in eq. (8) as follows:  

                                                      𝑍 = 𝛽0 + 𝛽1𝑥      (9) 

The hypothesis of logistic regression is given in eq. (9) as follows: 

                                                      ℎ𝛼(x) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑍) =  
1

1+𝑒−(𝛽0+𝛽1𝑥) (10) 
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In our EC-IoT system, we use logistic regression for analysing the collected sensor data. As a 

case study, we consider soil, weather, and crop related dataset for crop productivity 

prediction. The accuracy, precision, recall, and F1-score using the logistic regression are 

measured for performance evaluation. 

Accuracy: Accuracy (𝐴) is the ratio of the properly predicted values and the total number of 

predicted values, mathematically presented as follows: 

                                                 𝐴 =
∝+𝛽

∝+𝛽+𝛿+𝛾
    (11) 

where, ∝, 𝛽, 𝛿, and 𝛾 presents true positive, true negative, false positive, and false negative 

predicted values respectively. 

Precision: Precision (𝑃) is the ratio of true positive predicted values and the sum of true and 

false positive predicted values, mathematically presented as follows: 

         𝑃 =
∝

∝+𝛿
    (12) 

Where, ∝ and 𝛿 presents true positive and false positive predicted values respectively. 

Recall: Recall (𝑅) is the ratio of true positive predicted values and the sum of true positive 

and false negative predicted values, mathematically presented as follows: 

         𝑅 =
∝

∝+𝛾
    (13) 

Where, ∝ and 𝛾 presents true positive and false negative predicted values respectively. 

F-score: F-score is mathematically presented as follows: 

                                          𝐹𝑠 =
2∙(𝑃∙𝑅)

𝑃+𝑅
    (14) 

Where, 𝑃 and 𝑅 presents the precision and recall respectively. 

5. Results and Discussion: 

We simulate the EC-IoT framework in MATLAB2021a. Figure 2 presents the latency in the 

EC-IoT and conventional cloud-only IoT systems. The latency is measured in seconds (sec). 

In cloud-only IoT system, the entire collected sensor data is sent to the cloud instead of using 

the edge device for pre-processing the data. As a result, the data transmission latency is high 

compared to the edge-based system. This is observed that the EC-IoT system has 

approximately 55% lower latency compared to the cloud-only IoT system.  
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Figure 2: Latency in EC-IoT and cloud-only IoT systems 

 

Case Study: Crop productivity prediction: 

In this section, we have applied machine learning methods logistic regression on the input 

data set [11] to observe their efficacy in agricultural yield prediction. In this experiment, soil, 

crop, and weather parameters (N, K, P levels of the soil, temperature, humidity, pH, and 

rainfall) are taken in the input dataset. Among of this dataset, 80% samples are taken as 

training dataset and 20% samples are taken as testing dataset. According to the classifiers, the 

obtained prediction accuracy of five different classes (banana, jute, mango, papaya and rice) 

is represented along with the respected confusion matrix.  

Table 2 shows the comparative test accuracy obtained for each of the different classes 

according to logistic regression classifier. 

Table 2: Confusion matrix obtained for the crop-yield dataset 

 Banana Jute Mango Papaya Rice 

Banana 20 0 0 0 0 

Jute 0 15 0 0 5 

Mango 0 0 20 0 0 
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Papaya 0 0 0 18 2 

Rice 0 2 0 0 18 

 

The accuracy, precision, recall, and F-score values of the considered dataset for each class are 

determined and presented in Table 3. Figures 3, 4, 5, and 6 graphically present the respective 

accuracy, precision, recall, and F-score values. 

Table 3: Accuracy, precision, recall, and F-score for the considered dataset 

Crop Accuracy Precision Recall F-score 

Banana 0.98 0.98 0.98 0.98 

Jute 0.75 0.88 0.75 0.75 

Mango 0.98 0.98 0.98 0.98 

Papaya 0.9 0.98 0.9 0.9 

Rice 0.9 0.72 0.9 0.9 

 

 

Figure 3: Accuracy in considered set 

 

 

Figure 4: Precision in considered set 
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Figure 5: Recall in considered set 

 

 

Figure 6: F-score in considered set 

 

 

From the results we observe that using the logistic regression we achieve the average 

accuracy, precision, recall, and F-score values of approximately 90% respectively for the 

considered dataset.  The response time for the considered dataset is presented in Figure 7. 

The response time is measured in milliseconds (msec). 

 

 

Figure 7: Response time in EC-IoT and cloud-only IoT systems 

This is observed that response time using EC-IoT is approximately 67% lower compared to 

the cloud-only IoT system. As the edge server provides the service on behalf of the cloud 
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servers, the response time is lower in edge-based system. Hence, from the simulation and 

experimental results we observe that EC-IoT can provide a latency-aware crop productivity 

prediction system. 

6. Conclusion: 

IoT has opened a new era in the field of smart computing. However, in conventional IoT 

system the use of cloud servers for entire data storage and processing suffers from higher 

latency. Moreover, storage and processing of the entire sensor data inside the cloud increases 

the overhead on the cloud and data privacy becomes a concern. Edge computing resolves 

these problems. This paper discusses the use of edge computing in IoT. The edge computing-

based IoT architecture and its working model are demonstrated in this paper. The latency and 

user response time are calculated. Logistic regression is used for data analysis. In the edge-

based IoT model, the collected sensor data are pre-processed inside the edge device, and then 

for further analysis and storage the cloud servers are used. This is observed that the EC-IoT 

system has approximately 55% lower latency compared to the cloud-only IoT system. As a 

case study, we have considered crop productivity prediction based on the N, K, P levels of 

the soil, temperature, humidity, pH, and rainfall. The experimental analysis presents that 

logistic regression achieves the average accuracy, precision, recall, and F-score values of 

approximately 90% respectively. This is observed that response time using EC-IoT is 

approximately 67% lower compared to the cloud-only IoT system. In future, we wish to 

introduce block chain and dew computing in the IoT systems for smart agriculture. 
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