

MAHISHADAL RAJ COLLEGE

(Govt. Sponsored)

NAAC Accredited 'A' Grade College

DST (FIST) Govt. Of India approved College, NSDC Training Partner

Estd.: 1946

Mahishadal : Purba Medinipur

Phone STD 03224 No. 240220

Ref. No.....

ADD ON COURSE 2019-20

Organised by Department Zoology & Computer Science

Topic: Basic Bioinformatics

Add on course summary:

REPORT:

Name of the course- Basic Bioinformatics

Course coordinator: Dr. Shubhamoy Das, (Associate Professor, HOD, Department of Zoology, Mahishadal Raj College)

Date of commencement: 14.08.2019

Date of completion: - 31.08.2019

Number of participant enrolled: 30

Total duration day: 15

Total duration hour: 30

Evaluation method:- Paper pen MCQ and practical work

RESULT DETAILS:-

Number of student participate in this program: 30

Number of student completes this program: 27

Number of student got certificate in this program: 27

Name of the course: Basic Bioinformatics

Course coordinator: Dr. Shubhamoy Das, (Associate Professor, HOD, Department of Zoology, Mahishadal Raj College)

Date:

4 About the course:

Bioinformatics course is an interdisciplinary field of Science that deals with Biological information. The two main Sciences that find applications in bioinformatics are Molecular Biology and Genetics. Bioinformatics course is a fusion of many fields such as Computer Science, Mathematics, Engineering, and Statistics. These fields combine to examine and exemplify Biological data. In other words, a Bioinformatics course is a study of information on Biological data. The Bioinformatics course is among the fastest growing fields in the field of Science, which helps in advancements of Biology as well as the processing and storing of related data. These tools are used in Bioinformatics courses to advance Biology research and to handle and store data linked to Biology. In a Bioinformatics course, candidates can study a variety of areas holistically while earning their degree.

Learning outcomes:

Completing a bioinformatics course opens up various job opportunities in diverse sectors where biological data analysis and computational biology skills are in demand. Job opportunities in bioinformatics continue to grow as advancements in genomics, personalized medicine, and data-driven research become increasingly important in various industries. Completion of this course, you have job opportunities in the fields of computational biologist, genomic data analyst, clinical bioinformatician, biotech research scientist, data scientist in life science, agricultural bioinformatics specialist, and environmental bioinformatician. Along with the booming Bioinformatics career scope, it has also become one of the highest-paid sectors and is continually rising.

4 Target audience:

Any interested students (UG & PG), research scholars, faculty members and, Industrial personals. Persons who have very much interest in Software based work.

Course content overview:

Bioinformatics is an interdisciplinary field of science that develops methods and software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology. chemistry. computer programming, information physics, computer science, engineering, mathematics and statistics to analyze and interpret biological data. The subsequent process of analyzing and interpreting data is referred to as computational biology. Computational, statistical, and computer programming techniques have been used for computer simulation analyses of biological queries. They include reused specific analysis "pipelines", particularly in the field of genomics, such as by the identification of genes and single nucleotide polymorphisms (SNPs). These pipelines are used to better understand the genetic basis of disease, unique adaptations, desirable properties (esp. in agricultural species), or differences between populations. Bioinformatics also includes proteomics, which tries to understand the organizational principles within nucleic acid and protein sequences.

Schedule: Total 30 hours

DAY	SCHEDULE		
Day 1	Introduction to Bioinformatics (T) (2 hours)		
Day 2	Nucleic acid databases and sequence retrieval (T+P) (2 hours)		
Day 3	Sequence alignment- BLAST, pair wise sequence alignment, multiple sequence alignment. (T+P) (2 hours)		
Day 4	Phylogenetic analysis and interpretation (T+P) (2 hours)		
Day 5	Protein databases and protein structure analysis (T+P) (2 hours)		
Day 6	Protein interaction study (T+P) (2 hours)		
Day 7	Protein Tertiary structure and Visualization tools(T+P)(2 hours)		
Day 8	Enzyme database. (T+P) (2 hours)		
Day 9	Bioinformatics in Agriculture – Challenges and Opportunities (T) (2 hours)		
Day 10	Basics of molecular interactions in medicinal chemistry and Drug design (P) (2 hours)		
Day 11	Artificial Intelligence for Bioinformatics. (T) (2 hours)		
Day 12	Introduction to functional genomics data analysis (T). (2 hours)		
Day 13	Hands-on training session on "Genomics data analysis in R 1 (P). (2 hours)		
Day 14	Hands-on training session on "Genomics data analysis in R 2 (P)		
Day 15	Hands-on training session on "Genomics data analysis in R 3 (P)		

4 Detail Work Schedule

Date	Day	Contents	Time	Duration	Experts	Designation
14.08.19	1	Introduction to	12 to 2pm	2	Dr.	HOD DEP.
		Bioinformatics (T)			Subhamoy	of
					Das	ZOOLOGY
16.08.19	2	Nucleic acid databases and	1 to 3 pm	2	Dr.	HOD DEP.
		sequence retrieval (T+P)			Subhamoy	of
					Das	ZOOLOGY
17.08.19	3	Sequence alignment-	3 to 5pm	2	Prof. Saheli	SACT
		BLAST, pairwise sequence			Maiti	Mahishadal
		alignment, multiple sequence alignment. (T+P)				Raj College
19.08.19	4	Phylogenetic analysis and	03 to 05pm	2	Prof. Saheli	SACT
		interpretation (T+P)	or to orpin	_	Maiti	Mahishadal
						Raj College
20.08.19	5	Protein databases and	02 to 04pm	2	Dr.	HOD DEP.
		protein structure analysis	_		Subhamoy	of
		(T+P)			Das	ZOOLOGY
21.08.19	6	Protein interaction study	01 to 03pm	2	Dr.	HOD DEP.
		(T+P)			Subhamoy	of
					Das	ZOOLOGY
22.08.19	7	Protein Tertiary structure	03 to 05pm	2	Dr.	HOD DEP.
		and Visualization			Subhamoy	of
		tools(T+P)preparation (T+P)			Das	ZOOLOGY

	1			1	1	1
23.08.19	8	Enzyme database	02 to 05pm	2	Prof. Sagnik Mandal	SACT Mahishadal Raj College
24.08.19	9	Bioinformatics in Agriculture – Challenges and Opportunities (T)	02 to 04pm	2	Prof. Manik Das	SACT Mahishadal Raj College
25.08.19	10	Basics of molecular interactions in medicinal chemistry and Drug design (P)	01 to 03pm	2	Prof. Manik Das	SACT Mahishadal Raj College
27.08.19	11	Artificial Intelligence for Bioinformatics. (T)	02 to 04pm	2	Prof. Moumita Jana	SACT Mahishadal Raj College
28.08.19	12	Introduction to functional genomics data analysis (T)	02 to 04pm	2	Dr. Rajkumar Guchhait	SACT Mahishadal Raj College
29.08.19	13	Hands-on training session on "Genomics data analysis in R 1 (P)	01 to 03pm	2	Dr. Rajkumar Guchhait	SACT Mahishadal Raj College
30.08.19	14	Hands-on training session on "Genomics data analysis in R 2 (P)	02 to 04pm	2	Dr. Rajkumar Guchhait	SACT Mahishadal Raj College
31.08.19	15	Hands-on training session on "Genomics data analysis in R 3 (P) Evaluation, valediction, feedback	02 to 04pm	2	Dr. Subhamoy Day, Dr. Rajkumar Guchhait, Prof. Sagnik Manadal, Prof. Manik Das and Prof. Moumita Jana. DR.Asim Kr Bera	HOD & SACT., Zoology; Principal, MRC
				30 hours		
		<u> </u>				

4 Course structure and examination scheme:

Course name	Theory classes	Practical classes	Continuous assessment		Total
	(hr.)	(hr.)	Theory	Practical	marks
Basic bioinformatics	15	15	50	50	100

4 Participant's Details and attendance:

Enrolment Details of Students

Sl. No.	Student ID	Roll No.	Name
1.	B.Sc/18/0002	2180002	MONIKA DAS
2.	B.Sc/18/0006	2180006	KRISHNENDU MAITI
3.	B.Sc/18/0007	2180007	SOMNATH GUCHHAIT
4.	B.Sc/18/0009	2180009	MRIDUL KANTI BERA
5.	B.Sc/18/0010	2180010	JAYANTA PAIK
6.	B.Sc/18/0011	2180011	SAHEB JANA
7.	B.Sc/18/0013	2180013	BAISAKHI MAITY
8.	B.Sc/18/0017	2180017	JYOTSNA MAITI
9.	B.Sc/18/0018	2180018	RIYA MAL
10.	B.Sc/18/0019	2180019	SHILARCHANA MAITI
11.	B.Sc/18/0020	2180020	SOUHARDYA DE
12.	B.Sc/18/0025	2180025	SWARUP DAS
13.	B.Sc/18/0026	2180026	ARJUN KUMAR JANA
14.	B.Sc/18/0028	2180028	BANDITA MANNA
15.	B.Sc/18/0029	2180029	SOUMILI SAHOO
16.	B.Sc/18/0031	2180031	SOMA CHITRAKAR
17.	B.Sc/18/0034	2180034	SOURAV DAS
18.	B.Sc/18/0035	2180035	SOUMYADIP MONDAL
19.	B.Sc/18/0036	2180036	DISHANTO DASGUPTA
20.	B.Sc/18/0037	2180037	PRITAM HAIT
21.	B.Sc/18/0044	2180044	SOURAV PATTANAYAK
22.	B.Sc/18/0046	2180046	DEBASISH HAZRA
23.	B.Sc/18/0047	2180047	SANATAN MANNA
24.	B.Sc/18/0048	2180048	BIKRAM DINDA
25.	B.Sc/18/0049	2180049	ARITRA AYAN MANNA
26.	B.Sc/18/0050	2180050	ATRI SUKUL
27.	B.Sc/18/0051	2180051	SREEDIP SAMANTA
28.	B.Sc/18/0052	2180052	ARPAN KOTAL
29.	B.Sc/18/0053	2180053	RIBHU PRAMANIK
30.	B.Sc/18/0054	2180054	JIBESH SINHA

4 Sample Question of Examination

in a initiator of the Pl	R database and collection of Protein sequences		
a) Madam Curie	b) David Lipman	11. Primers will be designed	by which of the following web tool
c) Stephen Altch		a) PrimePlex	b) Primer 3 d) Prime tool
	ase of INSDC among the following	c) Oligo 4.0	u) i nine teor
a) MIPS	b) PDB	12. Boolean Operators are	b) The words used in Key words
c) NCBI	d) UniProt	a) A machine o	d) A Server
	uence alignments, find the right among the following	c) A software	
a) Pairwise and		13. The search engine of NC a) Entres	b) Entreg
c) Single and M		c) Entrez	d) Entrance
	for Pairwise Alignment from the following	14. A centre that governs all	the nucleotide databases
a) CLUSTAL W	b) CLUSTAL X	a) ICGEB	b) INSDA
c) BLAST	d) PHYLIP	c) ISNDC	d) INSDC
5. Sequence similarity betwee	en the matched sequences was observed in	15. UniProt is abbreviated as	
a) Decimals	b) Percentage		in resourceb) Union Protein resource
c) Simple numb	ers f) Factorial	c) Universal Pro	,
6. The memory that access a	nd process the speed of CPU is		s only protein crystallographic and NMR structures
a) ROM	b) HDD	a) Protein Famil	, Controller Dalin
c) RAM	d) Modem	17. Match the following	Resource d) Protein Param
7. The symbol used for the F	ASTA format is		arch Protein database
. a):	b)#	.,	arch Protein database ► Translated Nucleotide query arch Translated Nucleotide ► Protein query
- c) <	d) >	C) BLASTx iii) Se	earch Nucleotide database ► Nucleotide query
8. The line used for the desc	iption of the sequence information after FASTA symbo	115	earch Protein database ► Protein query
called		•) 36	arch Translated Nucleat
a) Description I			
c) Forward line	d) Keyword Line	18. EST refers to)-v, E-iii c) A-v, B-iii, C-ii, D-v, E-ii
	nding the GenBank Format in NCBI database	a) Expressed Seq	
a) >	b)] -	c) Expressed 0	Sequence Tails
c) // 10. Find out the correct too			ce Tags d) Expressed Sequence Traits
	c) Comparative modelling d) H	lomology modelling	
a) BLAST c) Pfam	42. What is Python programme?		b) Same characters aligned
c) rialli	a) Script Command Prompt	b) Database programme	d) Different characters aligned
	c) Modelling tool	d) Docking server	
20. The process	43. Find the right web-based protein modelli	ng server	System b) Search and Save
a)	a) Easy MODELLER	b) PATCH MODELLER	and Literature d) Prediction and Analysis
c)	c) Swiss MODELLER	d) Script MODELLER	sed protein database is b) PDB
21. The biologica	44. What is PyMol stands for?		d) PIR
a)	a) Pyrate Molecular viewerb)	Pyrol Molecular viewer	rching protein structures in BLAST programme is b) nr/nt
c) 22. The translate		Python based Molecular vierwer	base d) Protein Ref-Sequence database
a)	45. PyMol has the following five uniform edi		ST to search the protein sequences Patented
c) 1		b) A, S, H, L, C	b) Patented protein sequences uences d) Protein databank sequences
23. Among the fi	a) A, H, C, L, S	c) H, A, S, L, C	d the protein structures from PDB database is
a)	c) S, A, H, C, L	C) H, A, S, L, C	b).doc
c) 24. Find the corr	46. CADD stands for	esign b) Common Aided Drug Des	d) .pdb •
analysis	a) Command Altered Drug De		interface b) Great Oser Interaction
a)	c) Computer Aided Drug Des	ign d) Computer Act Drug Design	Interfaced) Graph User Interface
c) 25. What is Liga	47. The protein docking based drug targets	s or amino acids are termed as	b) Andrez Sali lab
a)	a) Amino acid residues	b) Interact residues	d) Amberson lab
c)	c) contact residues d) Interface residues	sion that is used for Protein modelling 0 b) MODELLER 9.0
26. EMBL refers	48. To alter the protein structures in PyMo	I, the symbol for sequence selection is	R 4.0 d) Easy MODELLER 7.0
a)		b) L	site prediction from the following
c)	a) A	d) H	tion server b) SFC-Bio server d) Epitope prediction server
27. The data sto	c) S		docking server among the following
a)	49. What type of interface residues are sa	b) Moderate interface residues	rver b) PETCH DOCK server
c) 28. The term us	a) Distant interface residues		erver d) PACH DOCK server
26. The term us a)	c) Intact interface residues of) Weak interrace residues	odelling methods are available in bioinformatics
c)	50. For successful protein modelling, cho	ose the correct series of events required	b) 2 d) 1
29. What are Ar a)	a) Template structure, Align	ment, Query sequence, Generate Mode	
a) c)	h) Query Sequence, Templ	ate structure, Alignment, Generate Mod	e sequence to sequence similarity is called as
30. Find the cor	c) Generate Model, Alignme	ent, Query sequence, Template structur	e y b) Match based modelling
	c) Generate Model, Alguna	del, Template Structure, Query sequence	Ce
	d) All and Concerto Mo	del. Template Structure, Query sequent	

4 SAMPLE CERTIFICATE OF COURSE COMPLETION

