

## MAHISHADAL RAJ COLLEGE

(Govt. Sponsored)

## NAAC Accredited 'A' Grade College DST (FIST) Govt. Of India approved College, NSDC Training Partner

Estd.: 1946

Mahishadal: Purba Medinipur

Phone STD 03224 No. 240220

**Date:** 

\_\_\_\_\_\_ Ref. No.....

## **Online ADD ON COURSE 2020-21**

# **Organised by Department Zoology**

**Topic: Microscopy** Add on course summary:

#### **REPORT:**

Name of the course- Microscopy

Course coordinator: Dr. Shubhamoy Das, (Associate Professor, HOD, Department of Zoology, Mahishadal Raj College)

Date of commencement: 10.12.2020

**Date of completion: - 24.12.2020** 

Number of participant enrolled: 30

**Total duration day: 15** 

**Total duration hour: 30** 

Evaluation method:- Paper pen and practical work (Online)

**RESULT DETAILS:-**

Number of student participate in this program: 30

Number of student completes this program: 28

Number of student got certificate in this program: 28

Name of the course: Microscopy

Course coordinator: Dr. Shubhamoy Das, (Associate Professor, HOD, Department of Zoology, Mahishadal Raj College)



#### **4** About the course:

Light microscopy has become one of the most useful tools in the life sciences. Microscopes are very complex pieces of equipment, that have evolved to accommodate many different imaging techniques. Microscopy and its applications have promoted many key breakthroughs in life sciences. Its impact can be seen by the numerous Nobel prizes in Physics, Chemistry and Physiology and Medicine, that have been attributed to the development of new microscopy applications and techniques, or from discoveries that were possible due to microscopy breakthroughs. This course helps the basics of optics, proceeds through transmitted light microscopy, covers the various methods of imaging fluorescent samples, describes how cameras work and image processing, and concludes with some of the latest advances in light microscopy. In addition to lectures, we also provide labs, so as to cover pragmatics of how to use microscopes.

### **Learning outcomes:**

Completing a microscopy course can open up various job opportunities in fields related to microscopy and imaging. A microscopy course typically provides comprehensive training in the principles, techniques, and applications of microscopy. These courses are designed to equip students with the knowledge and skills needed to operate various types of microscopes, analyze microscopic samples, and understand the underlying principles of microscopy. Job opportunities in microscopy may be found in image specialist, research scientist, clinical laboratory technologist, pathologists assistant, quality control specialist, forensic scientist, biotechnologist, education and training, museum or conservation specialist.

#### **4** Target audience:

Students of science background (UG & PG), Researcher, and faculty members. Environmental Studies student may also participate.

#### **4** Course content overview:

At the completion of this course, participants should be able to:

- > Identify the major components of the microscope and their function
- > Identify how to maintain a microscope
- > Discuss the role of fluorescent in microscopy
- > Describe the process to correctly focus on the appropriate field of view
- > Use the ocular micrometer to measure an object under the microscope
- > Demonstrate the ability to troubleshoot encountered problems with the microscope



## **Schedule:** Total 30 hours

| DAY           | SCHEDULE                                                                                                                                               |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day 1         | Basics of Microscopy. History of microscope. (2 hours)                                                                                                 |
| Day 2         | Components of different microscope and how its work. $(T + P)$ (2 hours)                                                                               |
| Day 3         | Resolution of Microscope $(T + P)$ (2 hours)                                                                                                           |
| Day 4         | Different types of microscopes, including optical, electron, and scanning probe microscopes, and their applications. (T + P) (2 hours)                 |
| Day 5         | Explore various microscopy techniques, such as brightfield microscopy, phase-contrast microscopy, fluorescence microscopy, and more. (T + P) (2 hours) |
| Day 6         | Principles of Phase contrast. (T + P) (2 hours)                                                                                                        |
| Day 7         | Methods, cell, tissue sample preparation. $(T + P)$ (2 hours)                                                                                          |
| Day 8         | Phase contrast image analysis and interpretation. (T + P) (2 hours)                                                                                    |
| Day 9         | Image acquisition and processing, emphasizing techniques to enhance image quality and clarity. $(T + P)$ (2 hours)                                     |
| <b>Day 10</b> | Principles of Fluorescence microscopy (Fluorescent dyes and proteins, and selection of Fluorescent Probes). (T + P) (2 hours)                          |
| Day 11        | Tissue or cell preparation for fluorescence microscopy. (T + P) (2 hours)                                                                              |
| <b>Day 12</b> | Fluorescence Microscopy based methods to study SF 1 protein in Tricogaster fish. $(T + P)$ (2 hours)                                                   |
| Day 13        | Image analysis and interpretation 1. (T) (2 hours)                                                                                                     |
| Day 14        | Basic of SEM and TEM. (2 hours)                                                                                                                        |
| <b>Day 15</b> | Overall discussion. Doubts clear and revision (2 hours)                                                                                                |



## Detail Work Schedule

| Date     | Day | Contents                                                                                                                                     | Time       | Duration | Experts                                             | Designation                       |
|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-----------------------------------------------------|-----------------------------------|
| 10.12.20 | 1   | Basics of Microscopy.<br>History of microscope                                                                                               | 12 to 2pm  | 2        | Dr.Subhamoy HOD, Das Zoology, MRC                   |                                   |
| 11.12.20 | 2   | Components of different microscope and how its work. (T + P)                                                                                 | 1 to 3 pm  | 2        | Dr.Subhamoy<br>Das                                  | HOD,<br>Zoology,<br>MRC           |
| 12.12.20 | 3   | Resolution of<br>Microscope (T + P)                                                                                                          | 3 to 5pm   | 2        | Dr.Subhamoy<br>Das                                  | HOD,<br>Zoology,<br>MRC           |
| 13.12.20 | 4   | Different types of microscopes, including optical, electron, and scanning probe microscopes, and their applications. (T + P)                 | 03 to 05pm | 2        | Prof.Manik<br>Das                                   | SACT<br>Mahishadal<br>Raj College |
| 14.12.20 | 5   | Explore various microscopy techniques, such as brightfield microscopy, phase-contrast microscopy, fluorescence microscopy, and more. (T + P) | 02 to 04pm | 2        | Prof.Manik<br>Das                                   | SACT<br>Mahishadal<br>Raj College |
| 15.12.20 | 6   | Principles of Phase contrast. (T + P)                                                                                                        | 01 to 03pm | 2        | Prof.Saheli<br>Maiti                                | SACT<br>Mahishadal<br>Raj College |
| 16.12.20 | 7   | Methods, cell, tissue sample preparation. (T + P)                                                                                            | 03 to 05pm | 2        | Prof. Saheli<br>Maiti                               | SACT<br>Mahishadal<br>Raj College |
| 17.12.20 | 8   | Phase contrast image analysis and interpretation. (T + P)                                                                                    | 02 to 04pm | 2        | Prof. Saheli<br>Maiti and<br>Prof. Sagnik<br>Mondal | SACT<br>Mahishadal<br>Raj College |
| 18.12.20 | 9   | Image acquisition and processing, emphasizing techniques to enhance image quality and clarity. (T + P)                                       | 02 to 04pm | 2        | Prof.<br>Moumita<br>Jana                            | SACT<br>Mahishadal<br>Raj College |
| 19.12.20 | 10  | Principles of Fluorescence microscopy (Fluorescent dyes and proteins, and selection of                                                       | 01 to 03pm | 2        | Prof.Rajkuma<br>r Guchhait                          | SACT<br>Mahishadal<br>Raj College |

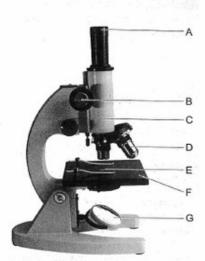
| ~ T       |               |
|-----------|---------------|
| 5         | 3             |
| G G       |               |
| MAHESHADA | L RAJ COLLEGE |

|          |    | Fluorescent Probes) (T + P)                                                              |            |          |                                                                                                                        |                                      |
|----------|----|------------------------------------------------------------------------------------------|------------|----------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 20.12.20 | 11 | Tissue or cell preparation for fluorescence microscopy. (T + P)                          | 02 to 04pm | 2        | Dr. Rajkumar<br>Guchhait and<br>Prof. Sagnik<br>Mandal                                                                 | SACT<br>Mahishadal<br>Raj College    |
| 21.12.20 | 12 | Fluorescence Microscopy based methods to study SF 1 protein in Tricogaster fish. (T + P) | 01 to 03pm | 2        | Dr. Rajkumar<br>Guchhait and<br>Prof. Sagnik<br>Mandal                                                                 | SACT<br>Mahishadal<br>Raj College    |
| 22.12.20 | 13 | Image analysis and interpretation 1. (T+P)                                               | 01 to 03pm | 2        | Dr. Rajkumar<br>Guchhait                                                                                               | SACT<br>Mahishadal<br>Raj College    |
| 23.12.20 | 14 | Basic of SEM and TEM.                                                                    | 01 to 03pm | 2        | Dr.Subhamoy<br>Das,                                                                                                    | HOD,<br>Zoology,<br>MRC,             |
| 24.12.20 | 15 | Evaluation, valediction, feedback Overall discussion.                                    | 12 to 2 pm | 2        | Dr. Subhamoy Day, Dr. Rajkumar Guchhait, Prof. Sagnik Manadal, Prof. Manik Das and Prof. Moumita Jana. DR.Asim Kr Bera | HOD & SACT., Zoology; Principal, MRC |
|          |    |                                                                                          |            | 30 hours |                                                                                                                        |                                      |
|          |    |                                                                                          |            |          |                                                                                                                        |                                      |
|          |    |                                                                                          |            |          |                                                                                                                        |                                      |
|          |    |                                                                                          |            |          |                                                                                                                        |                                      |
|          |    |                                                                                          |            |          |                                                                                                                        |                                      |

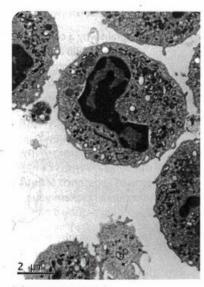
## Course structure and examination scheme:

| Course name | Theory        | Practical     | Theory marks | Practical marks | Total marks |
|-------------|---------------|---------------|--------------|-----------------|-------------|
|             | classes (hr.) | classes (hr.) |              |                 |             |
| Microscopy  | 15            | 15            | 40           | 10              | 50          |

## Participant's Details and attendance:




| Sl. | Student ID   | Roll No. | Name               |
|-----|--------------|----------|--------------------|
| No. |              |          |                    |
| 1.  | B.Sc/19/0032 | 2190032  | SUBHAJIT HAIT      |
| 2.  | B.Sc/19/0033 | 2190033  | SUTANU DAS         |
| 3.  | B.Sc/19/0034 | 2190034  | ABHIJIT MURMU      |
| 4.  | B.Sc/19/0035 | 2190035  | HASANUR KHAN       |
| 5.  | B.Sc/19/0076 | 2190076  | ABHINABA MANNA     |
| 6.  | B.Sc/19/0077 | 2190077  | SK MAHIBUL         |
| 7.  | B.Sc/19/0126 | 2190126  | DEBABRATA MONDAL   |
| 8.  | B.Sc/19/0127 | 2190127  | SRILEKHA MONDAL    |
| 9.  | B.Sc/19/0129 | 2190129  | SK ARIF MOHAMMAD   |
| 10. | B.Sc/19/0134 | 2190134  | SAMRAT DHARA       |
| 11. | B.Sc/19/0136 | 2190136  | BAKUL MAJI         |
| 12. | B.Sc/19/0137 | 2190137  | SK MAHAMMAD RIJUAN |
| 13. | B.Sc/19/0139 | 2190139  | APARNA MALLIK      |
| 14. | B.Sc/19/0141 | 2190141  | SOMNATH JANA       |
| 15. | B.Sc/19/0173 | 2190173  | SAIKAT MONDAL      |
| 16. | B.Sc/19/0175 | 2190175  | SUJAY PATRA        |
| 17. | B.Sc/19/0208 | 2190208  | PRALAY MIDYA       |
| 18. | B.Sc/19/0209 | 2190209  | JAYDIP KALSA       |
| 19. | B.Sc/19/0210 | 2190210  | SAJAL DAS          |
| 20. | B.Sc/19/0211 | 2190211  | AMIYA PATRA        |
| 21. | B.Sc/19/0212 | 2190212  | DEBALINA SINHA     |
| 22. | B.Sc/19/0213 | 2190213  | SENJUTI GHORAI     |
| 23. | B.Sc/19/0216 | 2190216  | PRITAM GUCHHAIT    |
| 24. | B.Sc/19/0219 | 2190219  | ABHIJIT JANA       |
| 25. | B.Sc/19/0220 | 2190220  | DIP KUMAR BERA     |
| 26. | B.Sc/19/0263 | 2190263  | AYAN SAMANTA       |
| 27. | B.Sc/19/0321 | 2190321  | KRISHNENDU HALDER  |
| 28. | B.Sc/19/0322 | 2190322  | PURBITA MAJI       |
| 29. | B.Sc/19/0324 | 2190324  | ANINDYA KHATUA     |
| 30. | B.Sc/19/0325 | 2190325  | AYANTIK BERA       |




#### **Sample Question of Examination**

- State the name of the part of a microscope where you would place the slide. (1 mark)
- 2 Photo C shows a light microscope.
  - a Give the letter of the part that is an objective lens. (1 mark)
  - **b** Give the letter of a part that is used to focus an image. (1 mark)
- 3 State why the lowest power magnification is used when first examining a specimen. (1 mark)
- 4 A microscope is fitted with three objective lenses (of ×2, ×5 and ×10).
  - a State what ×2 on a lens means. (1 mark)
  - b The microscope has a ×7 eyepiece lens. Calculate the possible total magnifications. Show your working. (3 marks)
- 5 Luka has made a slide of some onion tissue. When he examines the specimen with a light microscope, he sees large, thick-walled circles that make it difficult to observe the cells.
  - Give the reason for Luka's observation. (1 mark)
  - **b** State how he could prepare a better slide. (1 mark)
- 6 When looking at plant root tissue under a microscope, Jenna notices that about 10 cells fit across the field of view. She calculates the diameter of the field of view as 0.2 mm. Estimate the diameter of one cell. Show your working. (2 marks)
- 7 Photo D shows a certain type of white blood cell called a neutrophil. The image was taken using an electron microscope.
  - a State one advantage of using an electron microscope rather than a light microscope. (1 mark)
  - b Calculate the diameter of the cell to the nearest whole micrometre using the scale bar. (1 mark)
  - c Give your answer to part b in mm. (1 mark)
  - d Draw the cell and label the nucleus, cell membrane and cytoplasm. (2 marks)
- 8 Sasha draws a palisade cell from a star anise plant. The cell has a length of 0.45 mm.
  - Sasha's drawing is magnified ×500. Calculate the length of the cell in Sasha's drawing. (1 mark)
  - **b** Sasha adds a scale bar to show 0.1 mm. Calculate the length of the scale bar. (1 mark)
- 9 A heart muscle cell is 20 µm wide. It has been drawn 1 cm wide. Calculate the magnification of the drawing. (2 marks)



C a light microscope



D human neutrophils

#### AMPLE CERTIFICATE OF COURSE COMPLETION





THIS IS TO CERTIFY THAT

# SUBHAJIT HAIT

has successfully completed the Add-on Course on Microscopy held during 2020-21 academic year at Mahishadal Raj College.

Subhamoy Das. 5 Monkergee

Course Co-ordinator

**IQAC Co-ordinator** 

**Principal** 



THIS IS TO CERTIFY THAT

# PRITAM GUCHHAIT

has successfully completed the Add-on Course on Microscopy held during 2020-21 academic year at Mahishadal Raj College.

**IQAC Co-ordinator** 

Course Co-ordinator

**Principal**