Department Of Physics
Internal Examination
PG 2ND SEM
Full Marks-05
Paper: PHS 202.2

Answer any ONE from the following questions:

(5x1)

1. Derive expressions for the electron and hole concentrations in a semiconductor at thermal equilibrium for an intrinsic semiconductor. Show the concentrations in a plot.

(2+2+1=5)

What are meant by complete ionization and freeze-out in a semiconductor? What is a compensated semiconductor? Plot how the electron concentration in a compensated semiconductor changes with temperature. (2 + 1 + 2 = 5)

Department Of Physics
Internal Examination
PG 1ST SEM
Full Time- 45 Min
Full Marks-10
Paper: PHS 103.1

Write a 1)	short note on any one from the followings: XRD characterisation 2) Scanning tunnelling Microscopy 3) Raman Spectroscopy	(5x1)
Paper: PHS 103.2		
Answer any one from the following questions: 1) Write down the Maxwell's equations in differential form. Hence explain its physical		(5x1)
1)	significance.	(2+3)
2)	Write the conditions for Lorentz and Coulomb gauge. Draw their respective Minkowsk space-time diagrams.	(2+3)
3)	Prove Poynting's theorem. What is the significance of the Poynting vector?	(4+1)

Department Of Physics Internal Examination UG SEMESTER- 5 Paper: CC-11

Time- 45 Min

Full Marks-10

Answer any five from the following questions.

(5x2=10)

1. Find $\varphi(k)$ for a squarewave packet $\Psi(\mathbf{x}) = \mathbf{A}e^{ik_ox}$ $|\mathbf{x}| \leq a$

 $0 \quad |x| \ge a$

Find the factor A so that $\Psi(x)$ is normalised.

- 2. What do you mean by stationary state?
- 3. A two dimensional isotropic linear harmonic oscillator has energy E= $\hbar\omega$. Find the degeneracy of the system?
- 4. A hydrogen atom is in the state $\Psi(r) = \frac{1}{\sqrt{10}} (\Psi_{322} + 2\Psi_{221} + 2i\Psi_{220} + \Psi_{11-1})$. Find the expectation value of energies in the given state.
- 5. Calculate $\langle r^2 \rangle$ for H atom in its ground state.
- 6. If 3 spin $\frac{1}{2}$ particle is bound to 1-D infinite potential box of length L. Find the ground state energy of the system.
- 7. What is Larmor's frequency?
- 8. Define normal and anomalous Zeeman effects.

Department Of Physics Internal Examination UG SEMESTER- 6 Paper: CC-14

Time- 45 Min

Full Marks-10

Answer any five from the following questions.

(5x2=10)

- 1. Plot the spectral energy distribution curve for an ideal blackbody for two different temperatures.
- 2. What is ultraviolet catastrophe?
- 3. In which regions of the blackbody spectrum are the Wien's law and the Rayleigh Jeans law applicable?
- 4. Find out the ratio of energy radiated per unit area of two ideal blackbodies of temperatures 27°C and 327°C.
- 5. What are the Planck's quantum postulates of blackbody radiation? Write down the energy distribution of the Planck's radiation in terms of frequency and wavelength?
- 6. Using the Planck's radiation law derive the Wien's distribution and displacement laws.
- 7. Use Planck's radiation law to derive the Rayleigh-Jeans formula.
- 8. Give one example of experimental verification of blackbody radiation. Explain it.

Department Of Physics
Internal Examination
UG 3rd SEM
Paper: CC-5

Time- 45 Min

F.M.-10

Answer any five from the following questions.

(5x2=10)

- 1. Separate the Laplace's equation in spherical polar co-ordinate in 3D.
- 2. Write down the wave equation for the vibration of a circular membrane using separation of variable technique.
- 3. Evaluate $\int_0^3 3^{-4x^2} dx$
- 4. Evaluate $\int_0^\infty \sin^5\theta \cos^{\frac{7}{2}}\theta d\theta$
- 5. Explain the Hamilton's principle.
- 6. Derive Lagrange's equation of motion for a particle moving under a potential V(r) in the plane polar co-ordinate system.
- 7. Explain the Dirichlet's condition.
- 8. Calculate Fourier Series for the function f(x), defined on [-2,2], where

$$f(x) = -1$$
 $-2 \le x \le 0$
1 $0 \le x \le 2$

Department Of Physics
Internal Examination
PG 1ST SEM
Full Time- 45 Min
Full Marks-10
Paper: PHS 101.1

Answer any one from the following questions:

(5x1)

1) Evaluate the integral $\int_0^{2\pi} \frac{1}{a - b \sin \theta}$

2) What is essential singularity? Express $3x^3 + 2x^2 - 8x + 4$ in terms of Legendre polynomials.

(2+3)

3) The matrix is defined as $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 2 \end{bmatrix}$. Write down its characteristic equation and find out the eigenvalues.

Paper: PHS 101.2

Answer any one from the following questions:

(5x1)

- 1) Show that the number of degrees of a rigid body is six.
- 2) Prove that the Poisson brackets are invariant under canonical transformation.
- 3) Write down the Lagrangian of a system having three carts of equal mass connected by two identical springs. Hence find out the equation of motion in matrix form. (2+3)

Department Of Physics
Internal Examination
PG 4TH SEM
Full Marks-05
Paper: PHS 402.1

Answer any ONE from the following questions:

(5x1)

- 1. (a) Write down the Schrodinger's equation for the ground state of Deuteron.
 - (b) Draw the ground state wavefunction.
 - (c) State the differences between low energy n-n and p-p scatterings. (1 + 2 + 2 = 5)
- 2. Write down the five terms of the Semi-empirical mass formula and explain each of their significance. (5)